1. Subject Code: **TEE 101/201** se Title: **Basic Electrical Engineering** 2. Contact Hours: L: 0 4 0 3. Examination Duration (Hrs): Theory 3 tical 0 4. Relative Weight: CWA 25 0 25 50 0 5. Credits: 3 6. Semester: Autumn/Spring 7. Subject Area: **Core Course** 8. Pre-requisite: **Basic Physics**

Name of Department: - Electronics and Communication Engineering

9. Course Outcomes:	1.	Understand & apply laws /theorems of electrical engineering for analyzing basic electric circuits.
	2.	Understand & solve complex AC circuits.
	3.	Understand the operation of transformer and realize its requirement in transmission and distribution of electric power.
	4.	Realize the importance of various protection devices installed in electrical circuits.
	5.	Understand working and use of various AC/ DC machines.

10. **Details of the Course:**

Unit No.	Contents	Contact
		Hours
1	DC Circuits:	8
	Electrical circuit elements (R, L and C), Ohms Law, voltage and current sources,	
	Kirchoff current and voltage laws, Mesh and Node analysis with DC source.	
	Superposition, Thevenin and Norton Theorems.	
2	AC Circuits:	8
	Representation of sinusoidal waveforms, peak and rms values, phasor representation,	
	real power, reactive power, apparent power, power factor, Analysis of single-phase ac	
	circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance.	
	Three-phase balanced circuits, voltage and current relations in star and delta	
	connections	
3	Transformers :	8
	Magnetic circuit, BH characteristics, ideal and practical transformer, equivalent	
	circuit, losses and efficiency of transformers, auto-transformer.	
4	Electrical Machines:	9
	Working principle and e.m.f equation of dc machine, torque speed characteristic of	

	separately excited dc motor, working principle of three phase induction motor	
5	Electrical Installations :	9
	Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, RCD, MCCB, Types	
	of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for	
	Batteries. Elementary calculations for energy consumption, power factor	
	improvement.	
	Total Hours	42

11. Suggested Books:

Sl. No.	Name of Authors/Books/Publishers	Year of Publication/Reprint
	Text Books	
1.	D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill.	2010
2.	D.C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill.	2009
3	V. N Mittle and Arvind Mittle, "Basic Electrical Engineering" Tata McGraw-Hill Education Pvt. Ltd.	2005
4	V.D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India.	1989
	Reference Books	
1.	E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.	2004
2.	L.S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011	2010

12.	Mode of Evaluation	Test / Quiz / Assignment / Mid Term Exam / End Term Exam / Lab Exam