

Engineering Physics

Name of Department: - Physics

1.	Subject Code:	TPH 101/2	201	Course Title:	Engineering Physic	s
2.	Contact Hours:	L: 3	5	T: 0 F	P: 0	
3.	Examination Dura	tion (Hrs):	Theo	ory 3 Pra	actical 0	
4.	Relative Weight:	CIE	25	PRS 0 M	ISE 25 SEE 50	PRE 0
5.	Credits:	Γ	3			
6.	Semester:		I/II			
7.	Category of Cours	e:	DSC	-		
-		L	-			

8. **Pre-requisite**: Basic Knowledge of Physics

9. Course Outcome:	 After completion of the course the students will be able to: CO1: Define the wave nature of light through different phenomenon. CO2: Extend the knowledge of Laser, fiber optics and polarization in engineering problems. CO3: Understand the concept of theory of relativity.
	 CO4: Discuss quantum theory of radiation and applications of Schrodinger wave equations and Quantum Computing CO5: Examine the behavior of superconductors and Explain the Maxwell's equations and nanomaterials.

10. Details of the Course:

UNIT	CONTENTS	Contact Hrs
Unit/Module-I	Interference: Conditions of interference, Spatial and temporal coherence, Bi-prism, interference in wedge shaped film, Newton's rings. Diffraction: Fraunhofer diffraction at single slit and n-slits (Diffraction Grating). Rayleigh's criteria of resolution. Resolving power of grating.	9
Unit/Module- II	 Polarization: Basic theory of double refraction, Malus law, Ordinary and Extraordinary ray, Production, and detection of plane, elliptically and circularly polarized light, specific rotation and polarimeters. Laser: Spontaneous and Stimulated emission of radiation, Einstein Coefficients, Principle of laser action. Construction and working of Ruby and He-Ne laser photovoltaic effect. Fiber Optics: Introduction to fiber optics; types of fiber, acceptance angle and cone angle, numerical aperture. 	9
Unit/Module-III	Special theory of relativity: Inertial and non-inertial frames, Galilean transformation, Michelson-Morley experiment (qualitatively), Einstein postulates of	8

special theory of relativity, Lorentz transformation equations, length contraction, time dilation, variation of mass with velocity, mass-energy relation. Quantum Mechanics: Quantum concept and radiation. Wave particle duality (de-Broglie concept of matter waves), Heisenberg's uncertainty principle, wave function and its significance, Schrodinger's equations, Schrodinger's wave function for a particle confined in one dimensional infinite potential box (rigid box), Eigen values and Eigen functions. Quantum computers: Introduction to quantum computing, Principle,		8
Unit/ Module-V	Nanocomputing, prospects and challenges. Superconductivity: Essential properties of superconductors, zero resistivity, Type I, Type II superconductors and their properties. Electromagnetism: Displacement current, Maxwell's Equations in differential form. Nano Physics: Density of states, Nanostructures, fabrication, and characterization techniques (qualitatively).	
	Total	42

Text Books:

			Year of
S.No.	Name of Authors/Books/Publishers/Place of Publication	Edition	Publication/
			Reprint
1.	Ajoy Ghatak, "Optics", Tata Mc Graw Hill.	4 th Edition	2009
2.	N. Subrahmanyam Brijlal& M. N. Avadhanulu, "Optics:", S. Chand.	24 th Edition	2010
3.	A. Beiser, "Concepts of Modern Physics", Tata Mc Graw Hill.	1 st Edition	
4.	Resnick, Krane, Halliday, "Physics (vol I&II)", Wiley.	5 th Edition	2007
5.	Robert Resnick, "Introduction to Special Relativity", Wiley	1 st Edition	2007
	Publishers.		
6.	N. David Mermin, Quantum computer Science, Cambridge	1 st Edition	2007
	University Press.		
7.	Adam Smith, "The Beginner's guide to quantum computing &	1 st Edition	2022
	mechanics", A. Smith Media.		
	Reference Books	1 st Edition	
1.	John R. Taylor, Chris D. Zafiratos, Michael A. Dubson, "Modern	1 st Edition	2007
	Physics", Pearson Education.		
2.	Gerd Keiser, "Optic Fiber Communication", Tata Mc. Graw Hill.	5 th Edition	2017
3.	Alastair I M Rae, Jim Napolitano, "Quantum Mechanics" Wiley.	6 th Edition	2015
4.	David J. Griffiths, "Introduction to Electrodynamics", Prentice.	3 rd Edition	2011
5.	Charles P. Poole, Jr. Frank J. Owens, "Introduction to		2017
	Nanotechnology", Wiley.		
6.	Hug D. Young & Roger A. Freedman, "University Physics", Edition,	12 th Edition	2008
	Pearson Publication.		